“I think we have it”

In honor of the Higgs announcements from CMS and ATLAS, a physics haiku I’m calling “The Heaviest Boson.”

Did you see that bump?

Standard Model wins again.

Magic number five.

Congratulations everyone!!!!

Update: The excellent radio show The World is asking its listeners to come up their own Higgs haikus. Submit yours here.

DIY Particle Physics

In honor of the blog’s new name, an article about people who build their own cyclotrons, via symmetry.

For many of those obsessed, the only way to satiate their hunger for these machines is to build their own. There are no guidebooks or instruction manuals, and if you bought the raw materials off the shelf, it would cost around $125,000. On average, amateur cyclotrons take two to three years to build.

“It didn’t take long to become obsessed….Where I would be without the cyclotron project I cannot even begin to imagine.” —Tim Ponter. Photo by Tim Koeth, via symmetry.

The amateur cyclotron builders mentioned range from high school students to college professors to Fermilab scientists. To bring down the cost of their hobby they scavenge old equipment, a technique familiar to the first cyclotron builders. Columbia’s cyclotron, for example, was built partly from salvaged parts in the 1930s. It ended its life as scrap metal.

The cyclotron’s heyday as a cutting-edge research tool is mostly over, though they are still widely used in medicine. The largest one ever built is 60 feet in diameter and is still running at the Canadian physics lab TRIUMF. The smallest involves a single electron trapped in a magnetic field and is perhaps more appropriately called an artificial atom.

Saying Goodbye to the Tevatron

Welcome to what I hope will be an occasional series: Labs of the Past, in which I take a look at labs or pieces thereof that no longer exist. Last fall, Fermilab shut down its flagship accelerator, the Tevatron, which had spent decades reigning as the most powerful particle accelerator in the world. Fermilab is still going strong and is throwing its considerable weight behind an innovative intensity frontier program, but I wasn’t the only one who was sad to see the Tevatron go. Needless to say, I was delighted to hear this week that data from the CDF and DZero collaborations is still actively contributing to the hunt for the Higgs boson. And in case you need to brush up on the accelerator’s many other achievements, the latest print issue of Symmetry Magazine includes a lovely piece on the Tevatron’s legacy by Rhianna Wisniewski.

I got my start writing about physics as a Fermilab intern, so when it was time for the Tevatron to be laid to rest last fall, I felt like I had to be there to say goodbye. What follows is my account of attending the Tevatron’s funeral on Septemeber 30, 2011.

An aerial view of the Tevatron. The Main Injector can also be seen in the background. Image courtesy Fermilab/DOE.

Approximately seven hours after the Tevatron shutdown, I squeezed out of Fermilab’s Users’ Center bar to head to an Irish wake for what was, until just a few months ago, the most powerful particle accelerator in the world. This being the CDF party, The Drug Sniffing Dogs, the collaboration’s official rock band, had been going strong for three and half hours and showed no sign of stopping. The set list had devolved from what the lead singer called “crying in your beer songs” like “It’s the End of the World as We Know It (And I Feel Fine)” to dance party favorites like “Super Freak.” I had signed two commemorative T-shirts, one on someone’s body, while sipping Two Brothers’ Atom Smasher beer and munching on homemade cookies frosted with the CDF logo. The whole affair was tinged with the melancholy elation of the night after high school graduation, with everyone desperately savoring the last moments of an already bygone era before truly letting themselves move on to what they hoped would be bigger and better things.

For many physicists, those bigger and better things await them at CERN’s Large Hadron Collider, which is already colliding particles at over three times the energy of the Tevatron and only operating at half power. Others will be staying at Fermilab to work on the lab’s new intensity frontier program, which involves building state-of-the-art superconducting accelerators to study muons and those potentially faster-than-light neutrinos you’ve heard so much about. Still others are moving on to careers in industry or medicine, while some are retiring along with the Tevatron. But on Friday, all eyes were on the machine that had, for the last 28 years, led the way in the study of the fundamental building blocks of our universe and made the Illinois prairie the best place in the world to be a high energy physicist. Read the rest of this entry »