Four great physics road trips

In 2009, I went on a physics-themed road trip (and wrote about it). I didn’t know it then, but I was participating in a grand tradition. Here are four great road trips from physics history.

On the road with Robert Oppenheimer, left, and Ernest Lawrence in 1932. Photo courtesy of the American Institute of Physics.

1. Ernest Lawrence goes West, 1928. After finishing his Ph.D. at Yale and spending a few years there as an assistant professor, Ernest Lawrence hopped in a Reo Flying Cloud and headed west to a new job at UC Berkeley. Once there, he invented the world’s first particle accelerator, founded the country’s first National Laboratory, planted the seeds for American Big Science, and put the U.S.’s experimental physics program on the scientific map. (His theoretical counterpart Robert Oppenheimer arrived at Berkeley one year later in a gray Chrysler.)

2. Glenn Seaborg gets on a train with most of the world’s plutonium, 1943. Seaborg’s team isolated the first tiny sample of plutonium on August 20, 1942 at the Met Lab in Chicago. About a year later, he shipped a 200-milligram sample of element 94 to Los Alamos, where it was used in an experiment that proved it could sustain a chain reaction. Seaborg soon followed his precious sample to New Mexico to spend his well deserved summer vacation lurking around Santa Fe with his wife and most definitely NOT visiting the secret Manhattan Project laboratory up on the mesa. Headed back to Chicago at the end of July, he offered to take the speck of plutonium he had loaned to the war effort with him. Robert Wilson made the hand off before dawn in a Santa Fe restaurant, arriving, according to Richard Rhodes, “in a pickup armed Western-style with his personal Winchester .32 deer-hunting rifle to guard a highly valuable but barely visible treasure.” The less flamboyant and decidedly unarmed Seaborg simply put the sample in his suitcase and caught the train home. Soon, much larger quantities of plutonium and enriched uranium would begin arriving at Los Alamos from the production facilities in Hanford, Washington, and Oak Ridge, Tennessee.

3. Richard Fenyman ditches Freeman Dyson to chase a girl, 1948. After World War II ended, many physicists who had devoted themselves to the technical challenges of building an atomic bomb finally had a chance to tackle some of their science’s lingering theoretical problems. One of these was an inconsistency in quantum electrodynamics, the quantum field theory that described photons and electrons. Richard Fenyman published a solution to the problem in 1947, but his explanation was seemingly at odds with the work of two other scientists, Julian Schwinger and Sin-Itiro Tomonaga, and no one was quite sure how to move forward. In the summer of 1948, Fenyman and his friend Freeman Dyson took a road trip from New York to Albuquerque (what can I say, physicists ❤ New Mexico), picking up hitchhikers, getting speeding tickets, and staying in at least one brothel along the way. (Ian Sample assures us “they sought only shelter.”) When they arrived in Albuquerque, Fenyman took off in search of a girl, leaving Dyson to aimlessly travel the Southwest on a series of Greyhound buses. He eventually boarded one that would take him back to New York and, somewhere in the middle of Nebraska, suddenly saw that the three competing theories about quantum electrodynamics were actually one and the same. Quantum field theory was saved.

4. Gerry Guralnik and Dick Hagen drive to Germany to be insulted by Werner Heisenberg, 1965. In the early 1960s, the question of how particles acquired mass was just beginning to be discussed. A handful of physicists scattered across the U.S. and Europe more or less independently worked their way toward a preliminary answer, describing a field that permeates space and gives mass to some particles but not others. Gerry Guralnik, Dick Hagen, and Tom Kibble were working on this problem at Imperial College in London, publishing their first paper a bit behind the other teams in 1964. Guralnik and Hagen planned to give talks on their work the next summer at a conference hosted by Werner Heisenberg in a town outside Munich. Since they were both Americans and wanted to see more of Europe, they decided to make a vacation of it and picked up a cheap car in France. After encountering artichokes for the first time in Paris, they made their way to Bavaria, where, much to their chagrin, their work was met with “almost uniform disbelief,” according to Guralnik. Heisenberg himself called their theory “junk,” causing Guralnik to doubt his future as a physicist. If scientists at the LHC find the Higgs boson, Guralnik and Hagen will finally be proved right.

Sources: The Making of the Atomic Bomb by Richard Rhodes and Massive by Ian Sample.


SpaceX and NASA, sitting in a tree

Today SpaceX’s Dragon spacecraft made history by being the first commercially built vehicle to dock with the International Space Station. So, yay for commercial spaceflight! I’ve always said I’m going to spend my first million dollars (HA!) on a ticket to the moon. But as I argue in an article published by GOOD yesterday, the grand-triumph-of-capitalism narrative that’s being repeated ad naseum isn’t the whole story.

In reality, Dragon’s mission is not a libertarian adventure. Rather, it is the result of a deeply collaborative effort between SpaceX and NASA that could change the way we go to space, just like past public-private partnerships that gave us railroads and commercial air travel.

Dragon makes its way toward the International Space Station. It successfully docked this morning. Photo courtesy of SpaceX.

Not only does SpaceX need NASA to lend it some of its hard-won legitimacy, it also needs the agency’s money to get its still risky business off the ground (pun intended). And NASA needs SpaceX, too. If the space agency is really going to send people to Mars and beyond in the next few decades, it needs to start outsourcing routine trips to low Earth orbit and dedicate its increasingly limited resources toward exploratory missions ASAP.

Finally, a fun/sad fact I learned while reporting this story: it will take the astronauts on the space station TWENTY-FIVE HOURS to unpack the cargo Dragon is delivering. Truly every kid’s dream job!


Saying Goodbye to the Tevatron

Welcome to what I hope will be an occasional series: Labs of the Past, in which I take a look at labs or pieces thereof that no longer exist. Last fall, Fermilab shut down its flagship accelerator, the Tevatron, which had spent decades reigning as the most powerful particle accelerator in the world. Fermilab is still going strong and is throwing its considerable weight behind an innovative intensity frontier program, but I wasn’t the only one who was sad to see the Tevatron go. Needless to say, I was delighted to hear this week that data from the CDF and DZero collaborations is still actively contributing to the hunt for the Higgs boson. And in case you need to brush up on the accelerator’s many other achievements, the latest print issue of Symmetry Magazine includes a lovely piece on the Tevatron’s legacy by Rhianna Wisniewski.

I got my start writing about physics as a Fermilab intern, so when it was time for the Tevatron to be laid to rest last fall, I felt like I had to be there to say goodbye. What follows is my account of attending the Tevatron’s funeral on Septemeber 30, 2011.

An aerial view of the Tevatron. The Main Injector can also be seen in the background. Image courtesy Fermilab/DOE.

Approximately seven hours after the Tevatron shutdown, I squeezed out of Fermilab’s Users’ Center bar to head to an Irish wake for what was, until just a few months ago, the most powerful particle accelerator in the world. This being the CDF party, The Drug Sniffing Dogs, the collaboration’s official rock band, had been going strong for three and half hours and showed no sign of stopping. The set list had devolved from what the lead singer called “crying in your beer songs” like “It’s the End of the World as We Know It (And I Feel Fine)” to dance party favorites like “Super Freak.” I had signed two commemorative T-shirts, one on someone’s body, while sipping Two Brothers’ Atom Smasher beer and munching on homemade cookies frosted with the CDF logo. The whole affair was tinged with the melancholy elation of the night after high school graduation, with everyone desperately savoring the last moments of an already bygone era before truly letting themselves move on to what they hoped would be bigger and better things.

For many physicists, those bigger and better things await them at CERN’s Large Hadron Collider, which is already colliding particles at over three times the energy of the Tevatron and only operating at half power. Others will be staying at Fermilab to work on the lab’s new intensity frontier program, which involves building state-of-the-art superconducting accelerators to study muons and those potentially faster-than-light neutrinos you’ve heard so much about. Still others are moving on to careers in industry or medicine, while some are retiring along with the Tevatron. But on Friday, all eyes were on the machine that had, for the last 28 years, led the way in the study of the fundamental building blocks of our universe and made the Illinois prairie the best place in the world to be a high energy physicist. Read the rest of this entry »